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FOREWORD

This report covers the progress made from February I, 1966 to

January 31, 1967 on a continuing study of the relation of two-phase detona-

tions to liquid rocket motor instability under NASA Contract NASr 54(07).

The study is under the direction of Professor J.A. Nicholls, Department

of Aerospace Engineering. Mr. Bruce Clark of NASA Lewis Research

Center, is the technical monitor.
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ABSTRACT

Experimental results on detonations in two phase mixtures of liquid

diethylcyclohexane and gaseous oxygen are presented. Measurements of

detonation velocity, and pressure and heat transfer behind the wave are made

on 940 p sprays at equivalence ratios . 18-. 96 and single streams of 2600 p

drops at an equivalence ratio of . 23. In general, the velocities are lower

than the theoretical Chapman-Jouguet velocities and their variation with

mixture ratio follow the theoretical trend. The structure of the reaction

zone of the detonation of the 2600 _ drops was studied by means of a new

piezoelectric transducer (described in the report),thin film heat transfer

gauges, and streak photography.

Difference equations for detonations with mass, momentum and heat

transfer at the boundaries, as well as expressions for transfer coefficients

of mass, momentum and heat transfer for diffusion limited laminar boundary

layer behind a shock with vaporization and combustion are derived. The

combined results can be applied to explain, in part, the measured velocity

defect in the 2600 _ drop mixture.

Experimental data on the acceleration, deformation and breakup time of

water drops (750-2700 p) by shock waves (M = 1.3 - 3.5) in air initially at

NTP are also included. Over the range studied, the breakup time is found to

be approximately proportional to the drop diameter and the inverse of the

convective flow velocity. Observed differences between the dynamics of

inert drops and reacting drops behind the detonation front are discussed.
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I. INTRODUCTION

The motivation for investigating two-phase detonation waves stems

from the fact that shock and detonation phenomena are now known to exist

in liquid propellant rocket motors. Our studies on two phase detonations

have shown that such waves are relatively easy to produce (1, 2, 3) Detona-

tions or steep fronted waves supported by combustion have been consistently

obtained in mixtures consisting of gaseous oxygen and liquid fuel where the

fuel was either in a spray or in a film on the walls of the tube. It is found

from our experiments that the detonation mechanism in the spray case is

related to the shattering of the drops by the convective gaseous flow, and in

the film case to film stripping, evaporation, and the high surface to volume

ratio of the fuel. A supporting study on the mechanism of drop breakup by

shock waves without the influence of combustion has shown that water drops

of the order of 1000 _ in diameter exhibit appreciable surface shear and mass

removal in a few microseconds after the passage of a 3.5 Mach number shock

in air originally at NTP. In the spray detonation larger Mach numbers are

involved so that drop stripping and breakup can start at even shorter times.

Aside from the pertinence of our studies to rocket motor instability,

there are other applications which can be cited. For part of the operating

regime, the supersonic combustion ramjet (scramjet) will likely use liquid

fuel injection. In view of the very high velocities in the combustor it is im-

portant to know the rate of breakup of the fuel and its effect on the combustion

rate. Other applications would include the use of liquid fuels injected on the

outside of an aerodynamic body for external combustion or for control forces,

thrust vector control, and the interaction of supersonic vehicles with clouds.

The theoretical and experimental studies on the subject of two phase

detonation which preceded our work have been reviewed in the past (Ref. 1, 3).

Reference (3) also included a comprehensive review of the literature pertinent

to the subject of drop shattering. Recently, some preliminary experiments



have been carried out by Morris et al. (4) on the development of detonation

in a mixture of kerosene and oxygen. Streak photographs of the self-

emitting phenomenon were obtained from which velocities of 5000-7100 ft/sec

were measured. However no correlation with mixture ratio was attempted.

In our previous reports (l' 3), the jump relations for two phase detonations

without dissipative losses were derived. It was shown in (Ref. 3) that a

dilute spray could be treated as a pseudo-ideal gas. This facilitated the

comparison between a spray detonation and its "all gaseous" counterpart

with the same heat release per unit mass of mixture. Computer calculations

were performed (2' 3) for diethylcyclohexane (DECH) (vapor pressure _ 1.5 mm

Hg at 70°F) and oxygen mixtures to obtain the Chapman-Jouguet velocity and

Mach number, and pressure, temperature and density ratios for the spray

as a function of equivalence ratio. Analytical work which treats the film

detonation as a laminar boundary layer problem with mass addition and heat

release resulting from reaction was also performed t3)''. Experimental

observations on both types of detonations and on drop shattering were also

reported(I," 3). The spray and drop shattering experiments necessitated the

production of controlled sizes of drops and therefore a technique to ac-

complish this was developed tl ,"5) and used.

In this report we present experimental results on the effect of mixture

ratio on the propagation of detonation for one size (940 #) droplet field.

In addition detailed experimental results on a single stream of drops (2600 ix)

are described. To assess the reaction zone, measurements of pressure and

heat transfer within the reaction zone are made. Pressure measurements

with commercially available transducers were inadequate to resolve the

pressure history in detail. Therefore a pressure transducer, which is

described in this report, was developed and has been used with encouraging

results. Heat transfer measurements with thin film transducers are also

reported.
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Experiments on the shattering of water drops when subjected to

shocks in air under wider conditions than reported before are made and

the results are discussed. Comparison between the dynamics of these

inert drops and the dynamics of fuel drops (2600 _) in the single stream

detonation experiments is made.

In addition to the above experiments, further analytical results on the

film detonation problem are presented. Also, treatment of the jump

relations wherein account of drag on the walls and/or drops as well as

heat losses within the reaction zone behind the detonation front, is made

and the results are applied to the detonation of a single droplet stream.



II. SPRAY DETONATION: EXPERIMENTAL RESULTS

1. Facility and Experimental Procedure.

The experimental facility for studying two-phase detonations consists

of the following main items: a) a device for producing a fuel spray,

b) a tube in which the spray is evenly distributed with the gaseous oxygen,

c) an initiation device, and d) instrumentation for the operation of the

facility and for data acquisition. Several versions of such a facility have

(1,2,3)
been described in detail before and Fig. 2.1 shows a schematic

diagram of the setup used for the experiments reported here. The detona-

tion tube which is shown schematically in Fig. 2.2, is a square tube 12-1/3 ft.

long with an internal side of 1.64". It is provided with two viewing sections.

The top section is used for observation of the spray before a run is made to

insure that it is properly set up. To one side wall of this section, the

driven section of the initiating tube is flush mounted at a 45 ° angle. The

lower viewing section which will be called the test section has an 11" long

window with its center located at 83" from the top of the tube and is used for

photographic observations during a run. Mounted flush with the inside wall

of the tube, are pressure switches which, in conjunction with a multiple RC

circuit and an oscilloscope operated in a raster mode as described in

Ref. (3), are used for velocity measurement. The raster circuit used

here is different from that used in Ref. (3) and is described in the Appendix.

Pressure and heat transfer measurements are made by appropriate trans-

ducers which are described also in the Appendix. These transducers are

located in general at stations near the test section where steady or nearly

steady conditions prevail.

The device for producing monodisperse sprays is described in Ref. (1,3, 5).

It consists of a small cylindrical chamber fitted at its bottom with a plate

having several capillary needles in parallel. The fuel capillary jets issuing

from the needles are broken up into regular size drops when the chamber is

4
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vibrated at the proper frequency as delineated in Ref. (5). It has been found

that an equally adequate method of inducing vibration in the liquid jets is to

vibrate a . 003" brass shim stock piece which makes up the top base of the

generator, as shown in Fig. 2.3. The main purpose of vibrating only the

top part of the generator is to keep its main body free from motion and thus

facilitate sealing it to the tube.

The operational procedure which can best be followed by referring to

Fig. 2.1, is described next. The fuel flow through the drop generator and

the signal generator frequency and amplitude are set and the drops are

checked to insure that regular sizes are produced. Then the solenoid valve

is closed, the detonation tube is dried with air and then purged with oxygen.

The initiating tube is evacuated and filled with 2H2+O 2 mixture usually at

atmospheric pressure. Then a cycle of events leading to detonation is started

with the microswitch timer which has a total cycle of 10 sec and circuit controls

in any position of the cycle to within 0.25 sec resolution. These events are as

follows:

1) The solenoid valve is opened so that the fuel flows through the

drop generator for a preset length of time controlled by the timer. The

duration is sufficient to allow the first drops to reach the bottom of the tube

and is usually 2-4 sec. The flow is terminated. 25 sec after the detonation

spark plug is fired. 2) The mechanical shutter is then opened, and 3) a

spark-source (. 2 _sec duration) or a flash unit (1 msec duration) are fired

so that either photographs of the spray before detonation or of the detonation

itself are obtained. When necessary, the light source is controlled by the

event itself as shown by the dotted path in Fig. 2.1. Finally, 4) the spark

plug for starting the gaseous detonation in the initiation tube is energized.

This detonation produces a shock wave in the driven section which hits the

spray and thus initiate s a detonation in the main tube.
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2. Experimental Results on 940/_ Drop Sprays.

Experiments with diethylcyclohexane (DECH) monodisperse sprays in

oxygen were conducted for the purpose of checking the influence of fuel-

oxygen ratio. The mixture is varied by changing the number of needles in

the drop generator. Needle plates with 4, 12, and 25 needles (I.D.. 020")

are used resulting in 940 #drops. Because of the nature of the spray

producing device as discussed in Ref. (5), these plates gave, from a

knowledge of the initial velocity (2.5 ft/sec) and shedding frequency (-320 Hz)

equivalence ratios of 0.83, 2.37, and 4.87 respectively at the injection point.

Because of the acceleration of the drops the equivalence ratios can theoretically

be calculated to reach nearly constant values of 0.216, 0.608 and 1.27

respectively at distances beyond 4 ft from the injection point. However,

due to some wall wetting, the measured equivalence ratio from photographs

of the spray averaged 0.18, 0.42 and 0.96 respectively. Examples of spray

photographs are shown in Fig. 2.4. As might be expected, both coalescence

as evidenced by the presence of large drops, and wall wetting as evidenced by

the streaks on the window, increase as the number of needles increase. In

calculating the equivalence ratio, consideration of the coalescence as well as

the drops on the wall which amount to about 20% of the fuel are taken into

account.

It should be mentioned that in checking the spray when the 12 needle

plate was first installed, it was found that the type of diaphragm used at

the bottom of the tube as well as whether air or oxygen was in the tube

affected the extent of both coalescence and wall wetting. A loose plastic

bag gave the best results. The problem resulting from the type of gas in

the tube was traced to the natural frequency of the gaseous column in the

tube. When the drop generator is driven at a frequency which happens to be

close to a multiple of the natural frequency of the tube, coalescence is more

intense. The situation is corrected by driving the generator at a slightly

different frequency from that dictated by theory t5).'"



I 

. .  . 
f 

Figure 2. 4 

1- 1.64” --{ 

The appearance of spray at test section.1 second 
before detonation. 

Spray from 4 needles 

Spray from 1 2  needles 

Spray from 25 needles 

10 



Measurements of detonation velocity throughout most of the tube length

are made from time measurements between pressure switches, as indicated

in the Appendix. The results are shown in Fig. 2.5 where the rant_e of

variation of the velocity is indicated. Similar velocity variation with tube

length is observed in all three cases. The velocity appears to taper off

near the test section but suffers an abrupt change to a steady velocity in the

last three feet of the tube. The sudden change is found to be due to a step

in the wall of the tube where the flanges of the tube and the test section meet.

Details on this are described in the next section.

At any rate comparison of the final steady velocities with theory (2' 3)

shows, as can be seen in Fig. 2.6, that the experimental values are within

5-8% of the theoretical values. The leanest mixture shows a value higher

than, whereas the other two mixtures indicate values lower than theoretical.

It should be mentioned, however, that for the two leanest mixtures the

microswitch timer (Fig. 2. i) was not available so that the difference in

time when the spray photograph is taken and detonation initiation is i-2 sec

compared to the 0.25 sec when the microswitch timer is used. Thus the

mixture ratio when detonation takes place could be higher than plotted on

Fig. 2.6. Similarly our data here cannot be fairly compared to the data on

the 940/i drop spray in Ref. (3) because no attempt was made in Ref. (3)

to precisely time the initiation of detonation. Figure 2.6 shows that the trend

in the measured velocity variation with equivalence ratio seems to follow the

theoretical trend very well. The velocity difference between theory and

experiment can, at present, qualitatively be attributed to the drag on the

drops and the tube walls and heat loss within the reaction zone as explained

in section III-3.

Pressure and heat transfer measurements were made for the leanest

and richest mixtures. Figures 2.7 and 2.8 show examples of the records

obtained. In the case of the leaner mixture, it appears that after the initial

11
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Figure 2 . 8  P res su re  and Heat Transfer Records of the Detonation of 940 pDrops 
from 25 Needles. (equiv. ratio = 0. 96) 

(a) Run 268. Upper beam: Model 6. transducer with accoustic 
absorbing rod at station 10, triggered at station 9, 200 psi/div 
and 50psec/div. Lower beam: heat transfer gauge No. 3 at 
station 11, 0.05 V/div. and 50psec/div.  

filter on charge amplifier at 10 mV/pCb, 198 psi/div. and 
50 psec/div at station 10, triggered at station 9. 
heat t ransfer  gauge No. 3 at station 11, 0.05 V/div and 
50 psec/div. 

(b) Run 269. Upper beam: Kistler Model 601A with 50 KHz output 

Lower beam: 
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rise in pressure to a pressure ratio of 27, there is a continuous increase in

pressure until 25 _sec after passage of the wave when the pressure ratio

reaches 37; then an eventual drop-off in pressure takes place to again a

pressure ratio of 27 at 45-85 _sec. The pressures can be compared with

the theoretical results as shown in Fig. 2.6. It can be seen that the original

jump is higher than the theoretical C.J. pressure ratio. On the same figure,

the curve labeled (P2 / P1)shock corresponds to pressure ratios of normal

shocks travelling at the detonation velocity in oxygen. The initial measured

pressure fits on this curve very well. This is reasonable and consistent with

the accepted model of a detonation. However the rise in pressure is unexpected

and may be due to secondary shocks as observed in the next section on larger

drops experiments.

For the richer mixture, a pressure ratio of 56 initially and 30 at 200 _sec

after detonation passage was measured. Again from Fig. 2.6, the initial

pressure rise falls on the shock pressure curve. The relatively steady

pressure at 150-200 psec, however, is lower than the C.J. pressure.

More pressure measurements are needed before any conclusions can be

made.

Preliminary heat transfer records shown in Fig. 2.8 are reduced as

indicated in the Appendix resulting in rates of ~ 10,000 Btu/ft2-sec at the

front and ~ 2500 Btu/ft2-sec at 100 _sec behind it. These rates for detona-

tions at M _ 7 are much higher than those obtained for a gaseous 2H2-O 2

detonation which travels at M _ 5.3.

16



3. Detonation of 2600_ Diameter Drops•

The size of the droplets in the combustion tube was increased to 2600

diameter in order to investigate the upper limit on drop size and at the same

time insure that no wall wetting occurred. With this drop size it is possible

to obtain a mixture ratio in the range of interest with only one stream of

drops. And since these drops are separated further than the 940 # diameter

drops due to the lower operating frequency of the generator and the higher

terminal velocity of the drops, better resolution of the drop dynamics in

the reaction zone could be obtained.

A needle plate with one 0.063 in. I.D. tube was used in the drop

generator which was operated at 116 Hz. The mass flow was measured

periodically by collecting a known volume of fuel in a known time, and the

drop diameter was thus calculated to be from 2530 to 2630 microns depending

on the pressure setting in the generator. The precise pressure at which the

best formation of the dropswas possible varied slightly from day to day, but

generally the size of the drops used was close to 2600 _ in diameter. The

drops leave the generator with a velocity of about 1.64 ft/sec and spaced

• 17 in. apart thus resulting in a mixture with an equivalence ratio of 2.5.

The drops then accelerate to a terminal velocity of 18 ft/sec with a measured

average separation distance of 1.84 in. at the test section and 1.89 in. at

3 ft below the test section which results in an equivalence ratio of 0.23. A

spark photograph of the back-lighted drops such as Fig. 2.9, was taken 1 sec

before each run to insure that the drops were properly set up. The test

procedure was the same as described in section I-1.

It is surprising that this configuration of drops would detonate at all, but

no difficulty was experienced in initiating the process, When air was used

instead of oxygen, combustion of this size drops could not be initiated, however.

Framing camera photographs and pressure records of the detonation

were taken first. The optical arrangement is shown in Fig. 2.10. A Fastax

camera model WF3 using 16 mm Dupont 931A reversal film at f/4 was positioned

17



Figure 2 . 9  Photograph of 2 6 0 0 ~  Drops in the Combustion Tube. 
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Figure 2.10 Schemutic of the Optical System for the Framing
Camera Photographs.
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to view the falling drops by means of back light over a small portion

of the test section. In this manner the exact position of each drop at the

time of passage of the detonation could be reconstructed. A Dynafax

model 326 framing camera using 35mm Tri-X film was focused on the

remainder of the test section and recorded the self-luminous light of

combustion. Framing camera photographs and pressure records from

Kistler transducers located before and after the test section are shown in

Fig. 2.11 for a representative test. As verified by the Fastax photographs,

the drops were well centered and separated slightly less than 2 in. apart,

so that there were 5 drops in the field of view. In the framing camera

photographs, the detonation wave is moving from right to left in each

frame while the time sequence is from left to right as indicated. The time

between frames is 95.2 #sec. Since shock waves do not register in a self-

luminous photograph, the first indication of combustion is taken as the

start of the reaction zone. The luminosity is at a relatively low level during

the first 4 frames (380 #sec) compared to frames 5-10; the significance of

this will not become apparent until the streak photographs are discussed.

The velocity of propagation for run 171, as obtained from Fig. 2. ll(b), is

2900, 3100, 3200, and 3600 ft/sec between stations 6-7, 7-8, 8-9, and 9-10,

respectively. The peak pressures as measured by this system varied from

135 psia at station 8 to 175 psia at station 10. There is apparently a some-

what stronger acceleration of the detonation after the test section, as will

be discussed later.

Since it appears that the reaction zone of the detonation is extended

many orders of magnitude over that of a gaseous detonation, one would like

to examine the gasdynamic structure of this detonation; that is, to describe

the features of the leading shock front, the droplet breakup, the chemical

reaction zone and the trailing rarefaction. Streak photographs, special

pressure transducers, and heat transfer gauges have been used for this

purpose.
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k-dP-4 4- direction of detonation 
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Figure 2.11 Framing Camera Photographs and Pressure  Record of 
the Detonation of 2600 p Drops. Run 171. 

(a) Dynafax Model 326, f 2.8, 2.6 psec exposure, 
95.2 psec between frames. 

(b) Kistler pressure transducers with 50 KHz output 
fi l ter  on charge amplifier at 10 mV/pCb, 
200 psec/div, triggered at station 6. 

For  beams starting at top: 

sta. 7 ,  Model 603, 143 psi ldiv 
sta. 8, Model 603, 132 psi/div 
sta. 9, Model 601A, 95 psi/div 
sta. 10, Model. 601A, 80 psi/div 
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The streak photographs of the 2600/z diameter detonations will be dis-

cussed first. A schematic diagram of the optical arrangement is shown in

Fig. 2.12. The drum camera, which consisted of the motor and drum of the

Dynafax model 326 with a new lens-cover plate-prism assembly, was focused

on a 0.015 in. slit which was positioned at the center of the test section window.

Collimated light from a Xenon flash tube with a duration slightly less than one

rotation of the drum was directed through the slit as indicated, to yield a

shadowgraph effect over a small portion of the test section.

In general the runs were qualitatively repeatable in all but 3 out of 45

cases. Three of the runs, which occurred interspersed between normal runs

in the course of several days, exhibited highly unstable behavior on both the

pressure transducers and the streak photographs. As shown in Fig. 2.13(a),

the shock runs far ahead of the combustion and at the position of the photograph

is decaying, while it appears that a new leading shock is forming at the edge

of the flame zone. The reason for this behavior in such a few cases is not

known.

The streak photograph of Fig. 2.13(b) is representative of "normal"

behavior. The vertical bright line is an image of the slit. The three fine

horizontal dark lines are reference wires placed across the slit at 2 and 3 in.

intervals. Increasing distance from the drop generator is in the positive x

direction. The dark, nearly horizontal line in the band of collimated light is

a drop which happened to be directly in the slit. The leading shock front is

travelling at a velocity of 3350 ft/sec. This velocity was obtained from pres-

sure transducers and not from the streak film directly because the speed of

the camera drum could not be monitored. All other velocities on the streak

photographs may be obtained relative to the initial shock velocity by measuring

the tangent of the angle between the horizontal and the line of disturbance. The

leading shock sweeps over the drops, accelerating and disintegrating them.

22



u_Z
O0

WW

._00

OW

I/////j

\

\

23

Li
t-
0
z

m

0 ,

I! II

o o
I_. Ib

o 0

o 0
r- f"

_ _J 0 0

_J ,_ _ r-

-.2" -- ,4-

,,,.. I_ O 0

123

._ _ .__ .__

c_

b_
0

0

0

r_

0

0

r._



t 

.A 
u 
cd 
G 
0 
a, 
k 
a 
a, 
0 s a 
G 

c, 

.r( 



Fig.2. 13 (c) Enlarged view of Run 279. 
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The light from combustion lags the initial shock by about 65 _sec. The dis-

crete very intense spots of luminosity at the start of the combustion zone

can be associated with the position of each drop and are interpreted as a rapid

combustion of the microspray wake which is stripped from the parent drop.

Figure 2.13(c) provides an enlarged view of the drop dynamics. Upon

collision with the initial shock, the drop in the collimated light instantaneously

undergoes a deformation of the front surface so that the drop appears about

15% narrower due to initial flattening (see Chapter IV). The wake from the

drop starts developing immediately and a bow shock is formed in front of the

drop. The separation between the bow shock and the drop increases with time

for two reasons--the drop is deforming laterally, and the relative velocity

between the drop and the convective flow is decreasing due to the acceleration

of the drop. The Mach number of the convective flow is 1.40 assuming normal

shock conditions and the Reynolds number based on drop diameter is 2 x 105.

The front of the drop is oscillating somewhat behind the bow shock. The wake

grows to about 1 in. long and then is violently consumed. As seen in Fig. 2.13(c)

and (f) the wake combustion produces a local shock wave and this shock terminates

the bow shock of the drop just downstream. Four secondary shock waves, which

are apparently generated by the combustion process, are seen in Fig. 2.13(c)

catching up to the leading shock. When one normal shock overtakes another,

a transmitted shock which is stronger than either but less than the combined

strength of both occurs. And the reflected wave is a rarefaction for _ < 5/3

which is true in our case. In this case the secondary shock waves could be

localized but nevertheless this provides the mechanism for the propagation of

the leading shock front. The strength of the secondary shocks are analyzed in

Table I along with other velocities of interest. The velocities of the secondary

shocks vary from 4900 ft/sec near the leading shock to 7800 ft/sec near the

wake combustion. The Mach number of these shocks was calculated assuming

a constant speed of sound behind the initial shock, and also by assuming the

secondary shocks to be a series of normal shocks. The former assumption

29

L



Run

279

289

299

and

301

TABLE I. ANALYSIS OF STREAK PHOTOGRAPHS

Disturbance

Initial shock

First secondary shock

Second secondary shock

Third secondary shock

Fourth secondary shock

Speed of sound behind initial shock

Convective flow behind initial shock

Chapman-Jouguet speed of sound

Chapman-Jouguet convective flow

Retonation wave

Drop in collimated light:

Free fall velocity

Absolute velocity when bow shock
terminates

Absolute velocity after wake

combustion

Initial shock

Shock from wake combustion

Speed of sound behind initial shock

Convective flow behind initial shock

Chapman-Jouguet speed of sound

Chapman-Jouguet convective flow

Retonation wave

Drop in collimated light:

Absolute velocity when bow shock

terminates

Absolute velocity after wake

combustion

Velocity near end of breakup

Initial shock

Speed of sound behind initial shock

Convective flow behind initial shock

Chapman-Jouguet speed of sound

Chapman-Jouguet convective flow

Retonation wave (Run 299)

@egrees)

58

66

68

75

75

41

50

43

34

-60

V

(ft/sec)

3350

4920

5200

7830

7830

1790

2510

1930

1420

-3620

0.5

6.5

2.7

18

250

100

60 3350

69 5170

46 1790

52 2510

45 1930

36 1420

-60 -3350

11 360

4 135

16.5 660

60 3750

43 1940

53 2880

45 2140

37 1610

-54 -3000

M

3.15

(2.75)

(2.90)(1.87)

(4.36)(2.24)
(4.36)(1.50)

1.40

0.74

0.017

3.15

(2.89)

1.40

0.74

3.54

I. 48

0.75
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would be more representative of very localized secondary shocks while the

latter assumption would represent secondary shocks which follow one behind

the other over a larger area. For example, as indicated in Table I, the

fourth secondary shock is traveling at a Mach number of 4.36 assuming a

constant speed of sound behind the initial shock front, but assuming a series

of secondary shocks the fourth secondary shock is traveling at Mash 1.5.

Since the pressure jump across the secondary shocks will be different for

the two cases, this information is of interest in interpreting the records from

the pressure transducers. It should be explained that some shock structure

can be seen outside the band of collimated light due to slight deflection and

scattering of the parallel beam.

Returning to Fig. 2.13(b), it is apparent that the luminosity continues at

the same general level until interrupted by a rearward moving discontinuity; at

that point the luminosity increases and at least some of the burning particles

change direction and move back up the tube. The velocity of this rearward

moving wave as determined by the slope is 3600 ft/sec. This wave is also

apparent in the pressure and heat transfer gauge records. The origin of the

disturbance is traced to be at the joint between the optical section, which has

square corners, and the lower section of the combustion tube, which is

structural tubing, with rounded corners. In addition to this mismatch there

was a slight misalignment. It was found that the strength of this rearward

moving wave could be decreased by providing gradual transition from the

square to the rounded corners. An explanation for this effect is that mis-

alignment of the tube produces standing oblique shocks in the convective

flow behind the leading shock front of the detonation. As a partially shattered

drop flows through the standing shocks, combustion is stimulated with the

result that pressure waves are sent out in all directions. The forward moving

shocks reinforce the leading detonation shock front while the rearward moving

shocks converge and are accelerated by unburned fuel in the reaction zone of

the detonation. Thus we have an induced "retonation" in the analogous sense

to what occurs at the transition to detonation in a gas.
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As further proof of the ability to induce retonation in this system, a 14 in.

long section of tube was added just above the optical section and a plate 1/4 in.

thick with a 2-1/4 in. diameter hole was inserted between the flanges of the

original combustion tube and the 14 in. section. In this way a retonation could

be triggered upstream of the test section with the result that the detonation

velocity was increased 400-600 ft/sec in the optical section. Figure 2.13(d)

and (e) were made with the induced retonation above the optical section. In

Fig. 2.13(d) the joint below the optical section was improved as best that could

be done with the structural tubing. The retonation still exists but is not strong

enough to reverse the flow. In Fig. 2.13(e) the retonation was eliminated by

using a machined section below the optical section. The band of luminosity in

the center of the photograph is double exposure due to the exhaust from the

bottom of the test section and should be neglected.

In Fig. 2.13(d) and (e) streaks of light before the bright combustion of

the wake are observable. Here the velocity of propagation has increased from

3350 to 3750 ft/sec and this causes burning of the drop in the stagnation region

just behind the bow shock. The stagnation temperature behind the bow shock

is estimated to be 1550°F in Fig. 2.13(c) and 2000°F in Fig. 2.13(d). The

stagnation point burning appears to last at least 130 #sec; it becomes less

distinct at the point where the bow shock is destroyed.

Additional velocity information associated with the reaction zone of the

two phase detonation with the aid of the streak photographs is shown in

Table I. The streaks immediately behind the initial shock in Fig. 2.13(b),

for example, follow quite closely the estimated convective flow velocity

behind a normal shock. As heat is added the angle of the streaks of luminosity

gradually decrease indicating a decrease in the convective velocity. In the

classical theory of detonation the convective velocity decreases until the fluid

is moving away from the initial shock front with a sonic velocity relative to

the initial shock. At this point the reaction zone is terminated and a trailing

rarefaction begins. From the streak photographs it is difficult to distinguish
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between heat addition and a rarefaction wave in terms of the angle of the flow,

and thus it is not possible to verify the classical model for this case. In order

to do this it is necessary to follow one streamline through the entire process.

Nevertheless one is tempted to try, and in Fig. 2.13(d) it appears that the

angle of the flow is about 32° near the end of the reaction zone which yields

a velocity of 1350 ft/sec compared to a Chapman-Jouguet velocity of 1610 ft/sec

which was calculated from Eq. 2.12 with CD = 0. The pressure and heat transfer

records, to be presented later, are more of an aid in determining the extent

of the reaction zone.

The displacement of the drop as a function of time a_ter passage of the

leading shock front and the complete disintegration time can also be obtained

from the streak photographs. In Fig. 2.13(f) and (g) the collimated light is

more intense, thus emphasizing the high density regions of liquid. Also

Fig. 2.13 (f) was taken with High Speed Ektachrome (ASA 160) rather than the

usual Tri-X Pan (ASA 400). The time required for complete disintegration of

a 2600 # diameter drop due to a two-phase detonation propagating at 3350 ft/sec,

as obtained from Fig. 2.13(f) and (g), is approximately 500 _sec. It is inter-

esting to note that at this time the velocity of the liquid is only 660 ft/sec which

is 760 ft/sec below the theoretical Chapman-Jouguet velocity and 1850 ft/sec

below the initial convective velocity. The displacement data, which was ob-

tained from Fig. 2.13(b,f,g), is shown in Fig. 2.14. During the first 100_sec

of the breakup process the velocity of the leading edge of the drop (obtained

from the slope of the x-t curve) fluctuates due first to the combustion of the

wake of the previous drop and then to the combustion of the parent wake. A

general acceleration of the drop is noted during the first 100 _sec. Between

the period of 100-300 #sec the velocity of the drop is remarkably constant.

The acceleration of the drop is apparently reduced by at least an order of

magnitude during this period. It is felt, however, that the shear stress of the

drop on the fluid does not decrease but rather that the pressure at the rear of

the drop increases due to combustion of the wake. For the purpose of
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comparison the displacement due to a constant acceleration of a constant

mass drop is also plotted assuming that the relative velocity between drop

and the fluid remains at the convective flow behind a normal shock. The

area of the drop was based on the initial projected frontal area. A drag

coefficient, C D = 1.5 gave the best agreement in the early stage but large

deviation can be observed at a later stage.

There appears to be a considerable difference between the behavior of

the drops described above and certain features observed in our shock tube

studies of inert drops. In the first place the data obtained in the shock tube

studies indicates a break up time about 60% of that obtained from Fig. 2.13.

However the difficulty in interpretation and the difference in experimental

techniques make this comparison difficult. Secondly, the shock tube studies

indicate that the drop undergoes approximately constant acceleration, during

the entire disintegration process while from Fig. 2.13 the velocity is nearly

constant during large portions of the breakup process. The acceleration of

inert drops is about 75% higher than that experienced by the burning drop at

the early stage of breakup within the two phase detonation. The shock dis-

placement data in section IV-2 can be shown to fit more closely to an average

C D of 2.6 than of 1.5. Another difference to be noted is that near the end of

breakup the inert drop in the shock tube has reached 80 to 90% of the convective

flow velocity while the drop in the two phase detonation has reached only 47 %

of the theoretical C.J. convective velocity or 36 % of the convective velocity

behind the initial shock front. It is of interest to note that the maximum

displacement of the detonating drop, as indicated in Fig. 2.14 is . 22 ft,

while using a constant acceleration with a C D of 2.6 would predict a total

displacement of 1.2 ft.

The pressure transducer records of the 2600 # diameter drop detonations

will be presented next. Figure 2.15 is shown for the purpose of indicating the

difficulty of measuring the pressure in the reaction zone of a detonation with
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Figure 2.15 Pressure  record of 2 6 0 0 ~  diameter droplet detonation 
using Kistler pressure transducers Model 603 with 50 KC output 
filter on charge amplifier at 10 mV/pCb. Run 295. 100 psec/div 
triggered at station 11. Upper beam: station 12, 134 psi/div. 
Lower beam: Station 13, 156 psi/div. 
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Kistler instrumentation. A filter has been used to suppress frequencies

above 50 KHz, however, it is readily apparent that the dynamic response of

the transducer overshadows the structure of the reaction zone. Further details

concerning the pressure instrumentation are given in the Appendix.

Pressure records obtained with the lead metaniobate transducer which

has the tin acoustic absorbing rod are shown in Fig. 2.16 for various positions

along the combustion tube. Trace (a) shows that the pressure pulse due to the

driver alone is about 10 psi at station 2. This pulse decays further as it pro-

gresses down the tube. With the drops and oxygen gas present, detonation is

initiated. Traces (b) and (c) show that the pressure of the leading shock front

jumps to 60 and 50 psi respectively at station 2. Furthermore a series of

secondary pressure spikes occur about 200 _sec behind the leading shock.

These pressure spikes rise at least 100 psi above the local static pressure

and are considered to be caused by the local combustion of the wake of the

individual drops, which at this station are spaced 1 to 2 cm apart. This pro-

cess can provide a powerful means of accelerating the leading shock front.

At station 4, as in (d), the pressure behind the initial shock is 100 psig, and the

secondary shocks occur sooner and rise about 50 psi above the local static

pressure. The time between secondary shocks is greater because the drops

are further apart. The velocity between stations 3 and 4 is 2680 ft/sec. At

station 8, as in (e), the initial pressure rise is 150 psi and the velocity

3120 ft/sec. The secondary shocks are apparent as well as what was deter-

mined to be the induced retonation. At station 12, as in (f), the detonation has

travelled 11 ft and experienced one induced retonation, the initial pressure rise

is 212 psi and the velocity 3850 ft/sec. It is felt that the majority of the pres-

sure oscillations are in the gas rather than the transducer because of the flat

response of the transducer to a pure normal shock. A reflected shock from the

end of the tube appears in (f) 1 msec after the leading shock front.

The velocity of propagation as a function of distance from the driver can

be obtained from the pressure records in two ways. First, the time from
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Fig.2.16Pressure and heat transfer records of 2 6 0 0 ~  diameter 
droplet detonations using pressure transducers with an acoustic 
absorbing rod and platinum thin film resistance gauges. 

(a) No drops, driver (30 in. Hg 2H2 + Q2) fired into 
1 atm air. Pressure  transducer No. 6. 5 at station 
2, 80 psi/div and 200 psec/div, triggered at station 
1. 

Pressure  transducer No. 6. 5 at station 2, 
80 psi/div and 100 psec/div, triggered at station 1. 

80 psi/div and 200 psec/div, triggered at station 1. 

(b) Run 296. 

(c) Run 294. Pressure  transducer No. 6. 5 at station 2, 
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Fig. 2. 16 

(d) Run 293. Pressure  transducer No. 6. 5 at 
station 4, 80 psi/div and 100 psec/div, 
triggered at station 3. 

station 8, 80 psi/div and 200 psecldiv, 
triggered at station 7. 

station 12,  80 psi/div and 200 psec/div, 
triggered at station 11. 

(e) Run 285. P res su re  transducer No. 6. 5 at 

(f)  Run 287. P re s su re  transducer No. 6. 5 at 
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Fig. 2. 1 6  

(g) Run 281. Upper beam: heat transfer gauge 
No. 10 at  station 10, 0. 01 V/div and 50 psec/ 
div, triggered at  station 9. Lower beam: 
pressure transducer No. 6. 5 a t  station 11, 
80 psi/div, and 50 psec/div delayed 350 psec, 
triggered a t  station 9. 

(h) Run 282. Upper beam: heat transfer gauge No. 
10 at station 10, 0. 02 V/div and 200 psec/div, 
triggered a l  station 9. Lower beam: pressure 
transducer No. 6. 5 at station 11, 200 psi/div 
and 200 psec/div, triggered at  station 9. 
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L 

7- 
80 psi  

80 psi  

T 
Fig. 2. 16 

Run 285. Station 8 triggered at station 7. Upper 
beam: heat transfer gauge No. 10, . 02  V/div and 
200 psec/div. Lower beam: pressure transducer 
No, 6. 5, 80 psi/div and 200 psec/div. 
Run 292. Station 10 triggered at station 9. Upper 
beam: heat transfer gauge No. 10, . 05  V/cm and 
200 psec/div. Lower beam: pressure transducer 
No. 6. 5, 80 psi/div and 200 psec/div. 
Run 288. Station 1 2  triggered at station 11. Upper 
beam: heat transfer gauge No. 10, . 05  V/div and 
200 p sec/div. Lower beam: pressure transducer 
No. 6. 5, 80 psi/div and 200 psec/div. 
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the trigger to the initial rise of the transducer can be used to compute the

average velocity between stations. And second, the initial pressure rise at

a given station can be used to obtain the velocity from the normal shock

relations. The results for the records which have been presented are shown

in Fig. 2.17. The values obtained by the two methods are reasonably close

thus lending confidence in the calibration of the transducers. The increase

in velocity at about 10 ft is due to the retonation process discussed above.

The theoretical steady state detonation velocity for this mixture ratio as

obtained by the computer program (Fig. 2.6) is 5624 ft/sec. The observed

velocity of 3850 ft/sec is 32 % below the theoretical. If this velocity is

assumed to be steady then one can conclude from Fig. 2.6 that more losses

are associated with the 2600 _ drops than the 940 _ drops. Accounting for

heat and drag losses according to Eq. 3.19 as explained in section III-4,

increases the detonation velocity to about 4800 ft/sec which is still 15 %

below the theoretical velocity.

Referring to Fig. 2.16 (g,h,j, and k) it is of interest to again consider the

pressure behind the leading shock front. After the initial jump the pressure

oscillates and increases slightly for about 200 #sec due to the generation of

secondary shocks. Then there is a gradual decrease in pressure indicating

that heat is being added to the flow. The pressure appears to reach a plateau

after about 600 _sec. Then there is a further decrease in pressure but at a

faster rate. It is significant that the wall temperature (from the heat transfer

gauges shown just above the pressure record) also levels out at about 600-

700 #sec. On this basis it is felt that the chemical heat release is over at

about 600-700 _sec behind the initial shock and that a trailing rarefaction

starts from that point. That is to say, the reaction zone thickness is about

2.25 ft.

A summary of the pressure at the initial shock front and at the estimated

end of the reaction zone is given in Table II as measured at various positions
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along the combustion tube. Also the measured results are compared with

the theory of section III. At stations 2, 4, and 8 (Figs. 2.16 c,d,i) the ob-

servation time is not long enough to determine the end of the reaction zone.

At station 2 the pressure is actually higher at 1400 psec after the passage of

the initial shock, than just after the shock. At station 4 the pressure at

1400 _sec equals the shock pressure. Stations 10 and 12 are more applicable

to the theory of section III. The measured pressure at what is considered

the end of the reaction zone (t x = 600 #sec) is in very good agreement with the

calculated Chapman-Jouguet pressure at the measured Mach number after

accounting for the effect of viscous drag.

The wall temperature data was converted to heat transfer to the wall

according to the procedure outlined in the Appendix. The results for runs

288, 292 and 285 (from the data of Fig. 2.16 i,j,k) is shown in Fig. 2.18.

This figure was drawn by a CALCOMP 780/763 digital plotter which is

linked to an IBM 7090 computer. Stations 10 and 12 show a heat transfer

rate of approximately 1000 Btu/ft2-sec for a period up to 800 _sec after

passage of the initial shock front. The large fluctuations are not unreasonable

in view of the discrete combustion zones, turbulence, and secondary shocks.

After 800 psec the heat transfer rate decreases markedly and the fluctuations

are considerably less. At about 1500 _sec the reflected shock from the end of

the combustion tube terminates the useful data. At station 8 the heat transfer

rate is considerably lower since the detonation is less fully developed. A

value of approximately 350 Btu/ft2°sec is maintained for 1200 _sec, at which

point the "retonation" appears. These results contrast significantly to the

heat transfer measurements behind a one atmosphere hydrogen-oxygen

gaseous detonation, which is discussed in the Appendix, due primarily to

the extended reaction zone and lower propagation velocity.
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III. TWO-PHASE DETONATIONS--THEORY AND APPLICATION

In Refs. (1) and (2) experiments were reported which demonstrated that a

detonation wave can propagate in a tube in which the walls are coated with a

thin film of liquid fuel; the tube is filled with gaseous oxygen such that the fuel

and oxidizer are completely unmixed. Results from pressure transducers,

self-luminous framing camera photographs and spark schlieren photographs

showed the detonation-like characteristics of this phenomena. In Ref. (3)
t

other observations of film detonations were reviewed and additional photo-

graphs of film detonations taken with an image converter camera were

presented. Also, the experimental results on the removal of an inert liquid

layer on a flat plate which was swept over by a normal shock were given. It

was concluded that the liquid layer is gradually stripped off but remains within

the boundary layer for at least 200 psec. Based on the experimental evidence,

a diffusion limited boundary layer combustion model for film detonations was

postulated. It is apparent that the boundary layer is highly turbulent. However,

as a basis of comparison to possible semi-empirical turbulent analyses, a

laminar boundary model was considered first. Equations for a laminar boundary

layer with mass addition and chemical reaction behind a travelling normal

shock were developed.

In this section the one-dimensional difference equations for a detonation

with mass, momentum and heat transfer at the boundaries will be developed

to obtain expressions for the Mach number of propagation, pressure ratio,

temperature ratio, etc., across the detonation in terms of the reaction zone

thickness, and drag, mass and heat transfer coefficients. These equations

apply to a film detonation as well as to a spray detonation provided that the

boundaries of the control volume are defined to account for the drops. These

equations will be useful for correlation with the experimental results. Num-

erical results for the transfer coefficients for a film detonation which were
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obtained from the solution of the laminar boundary layer equations will then

be presented. The solutions of the boundary layer profiles which were ob-

tained from the analysis will not be given here, but it is anticipated that a

separate report on this subject will be published.

1. One Dimensional Difference Equations with Mass, Momentum and

Heat Transfer at the Boundaries.

Consider a column of gas in a tube between x = x 1 and x = x 3 which

contains a discontinuity in flow variables at x = x2, i.e., a shock wave.

Heat and mass addition, and shear stress and heat loss at the boundaries

occur between x 2 and x 3. For a time unsteady flow the conservation equations

are best derived using a wall fixed coordinate system, however, for a time

steady flow either wall fixed or shock fixed coordinates may be used. It is

instructive to derive the steady flow conservation equations in wall fixed

coordinates and then transform the results to shock fixed coordinates. The

coordinate systems are shown in Fig. 3.1. The transformation from the

laboratory coordinate x to the shock fixed coordinate _ is given by x = u t - x.s

The velocity transformation between coordinates is _. = u - u..
1 S 1

Let the control volume be denoted by dotted lines. In shock fixed co-

ordinates the control volume is fixed. In wall fixed coordinates let the front

and back surfaces of the control volume move with convective velocities u 1

and u 3 respectively.

Conservation of mass for the control volume is

1 2

_-_ pA c dx = Mbdx

3 3

Moving the derivative inside the integral (applying the Leibnitz rule, see

Courant-Friedrich's, Ref. (6)) and accounting for the discontinuity at x 2,

we have in general,
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One-Dimensional Conservation Equations.
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1 2+ 1

_ ¢ dx +_ ¢ dx

3 3 2-

2

_ dx + ¢2+ dt

3

dx 3 ax 1 dx 2

---¢3-_--+¢1 dt ¢2- dt

Let the limits become:

dx 1

2+=2 , 2- = 1, and d--t- =ul

dx 2 dx 3
--=U , --=U

' dt s dt 3

Then

1 2

¢(x,t) dx = --dx + ¢2 Us

3 3

- ¢3 u3 - el(Us - Ul) (3.1)

Conservation of mass for a constant area duct becomes,

2 2

_ap b !--_dx+P2Us - P3u3 - Pl(Us -Ul) = A-c Mdx
3

For a constant velocity of propagation x and t are related by x = - u s t, i.e.,

moving forward in time is equivalent to moving back in distance in the labora-

tory fixed coordinate system, and thus we can write,

2 2

_ap_w u s_dx = -
3 3

ap
_-_dx=-P2U +P3 uS S

And the continuity equation becomes,

2

P3(Us-U3)-Pl(Us-Ul)=_-_-_! Mdx
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Since

2 3

3 2

the continuity equation in shock fixed coordinates is,

3

P3U3- PlUl =A_f MdE
(3.2)

Conservation of momentum for constant area duct is given by,

1 2

fA c_-_ pudx= (P3-Pl)Ac-

3 3

"rb dx

Moving the derivative inside, we obtain:

2 2

3 _dx+p2u2us-p3u32-plul(us-ul) =p3-pl-J _dx .

Thus,

3

bjP3U3(Us-U3)- PlUl(Us-Ul) = P3-Pl _ TdR .

Substituting _. = u - u. and using conservation of mass equation, we obtain:
1 S 1

3 3

P3_32 2 Usb f b _
- Pl Ul A c M d_ = Pl - P3 + A--c • d_ (3.3)

2 2

Conservation of energy for a constant area duct is given by,
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2 2

(eU )d_ P +-_- dx= (P3u3-Pl Ul) A

3 c3

(Q-q+MeM) dX

where the first term on the right hand side is the power supplied by outside

forces and the second term is the rate at which energy is transferred into

the control volume. Moving the derivative inside, the energy equation becomes,

_t + _x- _3 3+T/u3+"2 2+_/u- _, i + %-uI)
3

=P3u3-PlUl

2

bf
A c

3

(Q- q+MeM) dX

For constant velocity of propagation dx = - u dt and,
S

P3 13 + _/(Us - u3) - Ul)=P3u3-PlUl

2

bf
Ac

(Q-q+MeM) dX

Substituting u. = u - _. and using conservation of mass and momentum
1 S 1

equations, the energy equation becomes,

Pl Ul 1 + - m + 2 /A c

2

Md_=Pl_l -P3_3

3

bf+_c (Q- q+ vUs)d_ (3.4)
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Equations (3.2), (3.3), and (3.4) are the general conservation equations

in integral form for one-dimensional flow in shock fixed coordinates. Let us

now assume that:

a) The fluid is initially at rest, i.e., u 1 = 0.

b) The Chapman-Jouguet condition holds at position x3, i.e., u3

c) The gases are both thermally and calorically perfect so that,

= a 3

2
a

h=CT-
p 7-1

2 7P
a =--=TRT

P

In terms of p, a and u the conservation equations become,
S

P3a3- PlUs =c (3.5)

P3a3 - Pl + =u C +D (3.6)
\ 73 7ff s

- - = +2em) C+2u D+2E (3.7)
P3 a3 Pl Us\71 - 1 + Us s

where

3

c- f
Ac 2

_ [_[_As u 2
M dx= CM' A--"_--Z' Pl Us

\ cl "_-zl

2
_ b v dE = C D As s

D =A--c 2 _UsU2/ 2

= @Pl u (3.8)S

(3.9)
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3

E = A---_2

I 2

/AsVU2\
(Q-q) dx=AHC M_cc]_221plus - CH 1 + s2 -

= AH - C H i 2 A

A s u 2

Pl Us

Pl Us

(3.10)

Here we have replaced the integrals by appropriate transfer coefficients

based on the initial gas conditions, and also have introduced an overall

mixture ratio and the heat of combustion per unit mass of fuel. Also the

shock relation Pl Us = P2 _2 has been used.

From Eqs. (3.5, 3.6, 3.8, 3.9) expressions for the pressure, speed of

sound, density and temperature ratios across the detonation can be written

in terms of the Mach number of propagation as follows:

[ I
J

a 3 73 [.. 1 M C DA su22 ]
s (3.12)

- LM + + _
a I l+T 3 s 7 IMs(l +_b) 2Ac_ss_2 _f +

P3 (I+73)(1+_b) r 1 CDAsU22 I-i

-- = [1 + + u u2J (3.13)Pl 73 71 Ms2(1 + _) 2(1 + _b)A c s

1 71 CD As u22 M 2] 2

S

T3 73m3 +71(1+ _b) Ms2 + 2AcUsU2

T 1 71 m 1 Ms(1 + _)(1 + 73 )
(3.14)

In order to obtain an expression for the Mach number of propagation in

terms of the transfer coefficients, heat release, etc., one must also include

the energy equation which after considerable manipulation yields a fourth

order algebraic equation,
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4
M

S tl + _)2 +

C DA u22(1+ ¢)
S

Ac Us u2

+ 2M 2 73

s 71

(732- 1)(¢
(1 + ¢) -

+

+

h u2@3 2 s- 1)(1 + ¢) c H 1 +-_--- hw) A s u 2

2

7 3
+---2=0

71

2
al Ac _2

¢2)(AH + e m)

2

a 1

+
273 C D A s

271 A c u s u 2 J

(3.15)

When C D = C H = 0 in Eqs. (3.11)-(3.15) the jump relations for heterogeneous

detonations without dissipative losses are obtained (see, for example, Eqs. (7-10)

in Ref. 1). By considering the order of magnitude of the terms in Eq. (3.15)

on the basis of the next two subsections and by letting

2 2
U U

S _ S

hl +---if- - hw 2

Eq. (3.15) reduces to

2
M

S

1+¢_+

2
2@ 3 - 1) _AH/al 2

2 2

C DA su 2 (73 - 1) CHA su 2

A c Us u2 + Ac u2

(3.16)

or in terms of the velocity of propagation,
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2 2(732 - 1) CAH
u = (3.17)
s 2 2

C DA su 2 2(y 3 - 1) C HA su 2
l+_b+ +

Ac Us u2 Ac u2

Denoting (Us) ° as the approximate detonation velocity without losses in the

reaction zone, where

(Us)2o= 2(732 - I) CAH/(1 + _b) (3.18)

we have,

2
U

s 1

(Us)o 2 A s C D u22 2(732 - 1) As CH u2

1 + Ac(1 + _) Us u2 + Ac(1 + _b)u2

(3.19)

• , must be con-In order to evaluate Eqs (3.11-3.19) CD, CH, and As/A c

sidered separately for the walls, both with film combustion and without, and for

the drops. First, however, the transfer coefficients for a laminar boundary

layer behind a detonation will be developed and then numerical evaluation will

be made.

2. Mass, Momentum, and Heat Transfer Coefficients for a Film Detonation.

In order to evaluate the order of magnitude of the terms in Eqs. (3.11-3.19),

it is necessary to determine values for the transfer coefficients. The equations

for a compressible reacting laminar boundary layer behind a normal shock

wave were developed in Ref. (3). The coordinate system used is shown in

Fig. 3.2. In deriving these equations, the following assumptions were made:

1. The flow is laminar, steady, at constant pressure and the usual

boundary layer approximations hold.
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2. The Prandtl number is unity, the Schmidt number based on binary

diffusion coefficients for each pair of species is unity; body forces,

radiative energy transport, and thermal diffusion are neglected.

3. py,/ P2 _2 = 1

4. There is a one step chemical reaction of the form

N N

1 1 1 1

i=l i=l

5. The temperature of the vaporizing fuel is constant and equal to

the equilibrium boiling point temperature.

6. The properties of the external stream are constant.

The analysis was reduced to solving the Blasius equation,

d3f d2f

3 + f----_ = 0
d_ dT/

with the boundary conditions,

df(0)/d_ = 2Us/U 2

df(oo)/d_ : 2

f(0) B

d2f(0)/d77 2= - 2(1 - Us/_2)

Here f(_/)_/u2 P2 P2 _ has the properties of a stream function and the

similarity parameter 77 is defined by

(3.20)

(3.21)

(3.22)

(3.23)

u 2
77=

4P2 #2 _
0

p dy (3.24)

and B is a thermodynamic parameter which is defined by

h LB =h 2 -hw + _H . (3.25)
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The solution of Eqs. (3.20-3.23) for the parameter ranges of interest was

done on an analog computer and the initial conditions for f which were ob-

tained are shown in Table III. This table supercedes Table VI of Ref. (3).

In defining mass addition, drag and heat transfer coefficients the con-

vective velocity behind the shock in laboratory coordinates is used as follows:

3

2
C M = (3.26)

As P2 u2

3

bfTw d_

2
CD- 1 2

gas P2 u2

(3.27)

3

bf% 
2

CH - (h - hw_
u22

As P2 u2 2 + _.

(3.28)

Since it can be shown that under the assumptions of this section,

%--- 2+ - u2

it follows that

C D

CH - 2 (3.29)

In terms of f and a Reynolds number based on the laboratory velocity Eqs. (3.26-

3.28) become,
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TABLE HI. SUMMARY OF INITIAL CONDITIONS SATISFYING

THE BLASIUS EQUATION FOR VARIOUS VALUES

OFM ANDB.
S

Case -f(0)

1 0

2 1.00

3 0

4 1.00

5 2.00

6 3.00

7 3.50

8 4. 00

9 4.73

l0 0

Ii 3.00

12 3.60

13 4. 20

14 4.80

15 5. 40

16 0

17 4. 00

18 4. 80

19 5. 20

20 5. 60

21 6. 40

22 0

23 4. 00

24 5. 00

25 6. 00

26 7.00

27 7.50

f'(0) -f"(0) B M
S

0 -1.33 0

0 -0. 14 14. 2

4 2.88 0 i. 58

4 1.77 i.i 1.58

4 0.96 4.1 1.58

4 0.45 13.3 1.58

4 0.29 24.2 1.58

4 0.17 47.1 1.58

4 0. 073 130 I. 58

6 6. 79 0 2.24

6 1.67 7.2 2.24

6 1.16 12.4 2.24

6 0.78 21.5 2.24

6 0.49 39.2 2.24

6 0.30 72.0 2.24

8 i1.49 0 3.16

8 2.08 ll. 5 3.16

8 1.29 22.3 3.16

8 1.00 31.2 3.16

8 0.76 44.2 3.16

8 0.42 91.4 3.16

l0 16.89 0 5.00

10 3.63 8.8 5.00

l0 2.12 18.9 5.00

l0 1.15 41.7 5.00

10 0.58 96.6 5.00

l0 0. 40 150 5.00

33

14

88

77

96

45

29

17

073

40

591

410

276

173

106

21

400

248

192

146

081

ll

454

265

144

073

O5O

C H

0.

0.

i

67

07

i. 44

0. 885

0. 48

0. 225

0. 145

0. 085

0. 037

I. 20

0. 296

0. 205

0. 138

0. O87

0. 053

i. I05

0.20

0. 124

0. 096

0. 073

0. 041

I. 06

0. 227

0. 133

0. 072

0. 037

0. 025
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C M Rf_2= -
f(o)

[ (Us/U2) - 1] 1/2

(3.30)

CD _ = f"(0)

[ (Us/fi 2) - 113/2

(3.31)

C H Rf_e 2 = _
f',(o)

2[ (Us/_2) - 1] 3/2

(3.32)

3. Application--Estimate of the Effect of Drag and Heat Loss on the
Detonation Parameters.

The influence of drag and heat loss within the reaction zone on the detona-

tion properties described by Eqs. (3.11-3.14) and (3.19), will be briefly

examined. First the proper drag coefficients must be determined. As a basis

of comparison, drag coefficients for various cases of interest are summarized

in Table IV. All of these coefficients are for constant free stream properties,

which of course is not the case in a two-phase detonation, but will nevertheless

be used as a first approximation to our problem. The analysis for burning walls

in turbulent flow is not yet completed. It is interesting to note, however, that

the skin friction of a burning wall is much lower than that of an inert wall.

The numerical evaluation will be made for a droplet detonation only.

For this purpose we will use C D = 1.5 for drops within the reaction zone (based

on the initial projected frontal area) and C D = 2.5 x 10 -3 for the wall drag

coefficient. This latter drag coefficient which, as indicated in Table IV, is

for turbulent boundary layer over non-burning plate, is chosen because of

photographic evidence of turbulence within the reaction zone.

In order to evaluate As/A c for the drops let N = number of drops per unit

volume, X = distance between the shock and the end of the reaction zone and

R = radius of the drop. Then,

A =N_R2A X
S C

But by definition,
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TABLE IV. SUMMARY OF ESTIMATED DRAG COEFFICIENTS

Case

Inert flat plate:

A. Wind tunnel

1. Laminar boundary layer

(Ref. 7)

2. Turbulent boundary layer

(Ref. 8)

B. Shock Tube

1. Laminar boundary layer

form =3.16(Ref. 9)
s

2. Turbulent boundary layer

for M = 3. 16(Ref. 10)
S

General Form

1.33/R_ 2

0. 07 4/(Re2 )1/5

2. 22/R_2

For

Re 2 _ 3. 0 x 107

-3
0. 244 x 10

3.76 x 10 -3

-3
0. 406 x 10

2.5x 10 -3

Burning flat plate:

A. Wind tunnel

I. Laminar boundary layer

for B=31 (Ref. 11)

. Turbulent boundary layer

for B = 31 (Ref. 12)

So Shock Tube

1. Laminar boundary layer

for M = 3.16, B= 31

(this Sport)

2. Turbulent boundary layer

0° 069/R_2

0. 074 In (I + B)

(Re2)1/5 B

0o192/R_-_2

0. 0126 x 10 -3

0. 420 x 10 -3

-3
0.0352 x 10

Liquid drop in conventional shock tube:

A. Inert drop for 102<Re< 104(Ref. 13)- 2

B. Burning drop for 102<Re< 10 4(Ref. 13)~1.5
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N= 3¢Pl/4_ R 3 p_

therefore,

As/Ac = 3 ¢ Pl X/4 p_ 1_

or for our experiments with oxygen and DECH,

(As/Ac)drop s = 1.27 • 10 -3 ¢X/R

For the walls A /A is simply 16X/b for a square tube.
S C

The term u22/Us u2 is of course a function of Ms; its value changes from

2.11atM = 3to 3.64 atM =7foraperfectgaswith?= 1.4. For ourpur-
S S

poses here we will take u22/Us _2 = 3

The terms X/R and X/b must be evaluated from experiments. From our

experiments with the 2600 _ diameter drops it appears that X/1_ = 500. A

possible assumption, which must be checked by experiments, is that X/R

remains constant for different drop sizes• If the reaction length X is con-

sidered controlled by the breakup time of the drops, such an assumption would

be consistent with our results on the breakup of inert drops in Fig. 4.12 from

which one can infer a constant ratio between drop diameter and breakup distance.

With the above assumptions, Eqs. (3.11-3.14) for a spray detonation with

dry walls become,

a3 Y3Ms 5_ 1 \ 1.4¢

- )+ 1+----_a I 1 + 73 + $I Ms 2(1 + _b)

P3 _ (1+V3)(1+@) [_+ 1 1
Pl :Y3 _iMs2(l +

• 06 X/b1 (3.34)

+

-11.4 .o6x (3.35)
+ + l+, j
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T3 73 m3 I( 1 )
+_1(1+_)M 2 2

= Ms 2 _b)2(3/3 + 1.4 3/1 MT1 3/1 ml (1 + + 1)2 s s

q_

(3.36)

2 x
+ . 06 3/1 Ms

In Eqs. (3.33-3.36), the first term in the brackets represents the effect

of mass addition through the surfaces of the control volume, the second term

is due to the viscous shear stress produced by the drops, and the third term

is the viscous shear of the walls on the fluid. As shown by these equations for

a given M the effect of viscous drag is to increase the Chapman-Jouguet pres-
s

sure, speed of sound and temperature and to reduce the density. The effect

increases as the reaction zone becomes more extended. For our experiments

with the 2600 # diameter drops, X = 2.25 ft and X/b = 4. 1.

The more interesting effect of losses within the reaction zone is on the

velocity of propagation for which the heat transfer coefficient must also be

known. If we use the same assumptions as above and also take the heat transfer

coefficient, CH, for the inert walls as 2.5 x 10 -3 based on preliminary experi-

mental results, then Eq. (3.19) for the velocity becomes,

2
U

s 1+_

(Us2)o 1 + 3.8_+ X//b I' 12 + .14(3/32- 1)]

(3.37)

For our experiments with the 2600/_ diameter drops, this resuRs in a 25%

reduction in velocity due to drag and heat loss, when 3/3 = 1.18 is assumed.

Mass addition alone does not change the velocity of propagation.

More analysis needs to be done to explore the limits of propagation for a

two-phase detonation, but in general the limits appear wider than our experi-

ments have covered to date.
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IV. DROP SHATTERING

It is apparent from the experiments described earlier that drop shattering

plays a prominent supporting role in the development and propagation of

detonation waves in two phase mixtures. In view of this,an understanding of

the dependence of the rate of disintegration and the breakup time with the

physical characteristics of the drop and the flow field conditions surrounding

it, is in order.

The breakup of a liquid drop by a detonation front is accomplished through

an interaction between the flow field produced by the wave and the drop. A

schematic diagram of a shock-drop interaction is shown in Fig. 4.1. The

specific type of deformation and disintegration resulting from the interaction is

determined by the magnitude of the Weber number as shown in Fig. 4.2. For

We > 10, a condition applying to all the experiments described here, the drop

is deformed into a lenticular shape and layers of the liquid at its surface are

rapidly stripped off by the shearing action of the convective flow.

The important variables in the drop breakup phenomenon are shown in

Table V where the results of a dimensional analysis (3)'" are also presented.

non-dimensional breakup time T is an unknown function _ of the other non-

dimensional variables:

The

T : @(We, Re, Reg, M, fi) (4.1)

The shattering problem has been previously studied by a number of

investigators (13-21)" ", and a comprehensive review of the most significant

experimental and analytical studies is contained in Ref. (3). Although the scope

of the earlier studies did not cover the range of conditions characteristic of

two phase detonations, it appears that the two most important variables are

T and fi when a high dynamic pressure environment, as might be created by a

detonation wave, prevails. However,this remains to be more firmly established.
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TABLE V.

Dimensional Variables

DROP BREAKUP VARIABLES.

Non-Dimensional Variables

Breakup Time tb

Drop Diameter D

Surface Tension

Liquid Viscosity #_

Liquid Density p_

Flow Velocity V

Speed of Sound a

Flow Density pg

Flow Viscosity /Zg

tb V/D
We = pg V2D/a

Re_ = pg VD/#_

Reg = pg VD/pg

M= V/a

1. Experimental Apparatus and Procedure.

The experimental study involves the use of a drop generating system and a

shock tube. A single stream of uniform size drops is established in the shock

tube normal to the shock velocity and is subjected to shocks of various strengths

produced in a helium driven tube. Collimated light from a spark source is

utilized to back-light the drops and an image converter camera is employed to

photograph the interaction phenomenon. For all of the experiments reported

h _,_e the initial test section pressure is 1 atmosphere.

The experimental procedure consists of obtaining a time history of the

deformation, drift,and disintegration of a water drop by taking a series of

photographs, one at a time, at different time intervals after the incident shock

wave intercepts it. The wave speed, the drop diameter, and the vertical

trajectory of the falling drops are controlled so that the only variable is the

time delay in the photographic system. Further details on the experimental

facility and procedure can be found in Ref. (3).
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2. Results and Discussion.

The results discussed here are for experiments that cover the shock

Mach number range of M s = 1.5-3.5 with water drops having diameters in

the range D o = 750-2700 _. Photographs of typical shock wave-water drop

interactions are shown in Figs. 4.3-4.6. Drop deformation, displacement,

and breakup time correlations are given in Figs. 4.7-4. 11.

Figure 4. 3 shows the sequence of events leading to the shattering of a

stream of 750 _ drops by a M s = 2.0 shock wave where initially the convective

flow velocity relative to the motionless drop is approximately sonic and equal to

1415 ft/sec. The highlight which appears in the undisturbed drops is an image

of the spark light source and it remains very bright and distinct until the growth

of capillary surface waves disturbs and finally destroys the drops ability to act

as a focusing lens. In this sequence, the highlight disappears between 7.4 #sec

and 8.8 _sec, and the planar incident shock wave that is visible in several of

the pictures moves from left to right across the drops. The observed breakup

can be temporally divided into two rather distinct stages. The first one, or

dynamic stage, is the period during which the drops are flattened as a result of

the external pressure distributions. The second stage is characterized by a

surface stripping process which is produced by the shearing action of the con-

vective flow and which rapidly reduces the drops to clouds of micro-mist. At

t = 26 _sec after the shock made initial contact with the drop, this latter stage

is well developed.

When the incident shock Mach number is increased to M = 3.0, the defor-
s

mation and disintegration of a drop no longer appear as distinct and separate

stages of the breakup but occur almost simultaneously as seen in Fig. 4. 4.

For example, within only 10 #sec after the shock passage, a significant wake of

micro-mist is formed behind the drop, and since the convective flow is supersonic

with a Mach number = 1.36, a detached bow shock is also present in the photo-

graphs. At t = 34 #sec capillary surface waves are visible and their wave length
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and amplitude increase rapidly until at t = 102 _sec the drop completely loses

its hemispherical shape. The vertical line appearing in all the photographs

of this series is a fiducial marker located on the test section windows.

Figures 4. 5 and 4. 6 are presented to illustrate two important results. First

of all, it is observed that in only 14 _sec after a M = 3.5 air shock collides
s

with a 2700 p drop, a well defined wake is formed behind it. The interesting

feature of this wake is that its shape is similar to that developed behind a

hypersonic blunt body where the flow, as a result of strong lateral pressure

gradients, also converges to form a narrow recompression neck region several

body diameters downstream of the rear stagnation point. The very fact that the

liquid material being continuously stripped off from the surface of the drop is

able to follow the streamline pattern of the wake indicates that the drop is

reduced to a fine micro-mist. For if the drop were being eroded away in

rather massive pieces, which by reason of their inertia were unable to follow

the streamlines, the shape of the wake would be entirely different from the one

visible in the photographs. Secondly, the pictures of the 1090 # drops, taken

at a smaller magnification to include the entire wake, clearly reveal that the

breakup is a continuous process of disintegration that begins shortly after

the initial contact between a shock and a drop and proceeds until the drop is

completely transformed into a cloud of mist. For purposes of this study, the

breakup is defined as complete when the wake has the diffuse appearance

evident in the photograph taken at t = 134.7 #sec after shock passage.

The deformation of a drop as defined by the ratio of maximum diameter to

the original diameter is plotted in Fig. 4. 7 as a function of time. One ob-

serves that the time required to reach an equivalent state of deformation

decreases and the maximum diameter attained increases as the incident shock

Mach number goes from M = 1 3-3.5. For example, when M = 1.3, the
S " S

time required for a 2700 _ drop to reach its maximum deformation of 2.3 D o

is 230 _sec whereas at M = 3.5 it only takes 55 _sec to attain a deformation
s

ratio of 3.8.

74



I 

a 
a, 
P s 
2 
5 
c, m 

k 
a, 

4 

7 5  



76 



0
0
_r_

0
_0

tO

_L

o i
N 0

o
o

i,i

IL

I,I

oO_
-- I--

0

0

_L
0
0

0

0

Q;

L"-

Q;

o,--4

I I I

°O/(] 'I1313 IAIVI(I

oJ

clO_lO 03ZI7VIAIEION

0

77



Typical displacement data obtained from the experiments are plotted in

Fig. 4.8. The parabolic curves represent the best parabolic fit to the data.

Excellent fit is evident at the initial phase of the breakup, but in the later

phase deviations can be observed. This suggests that, while initially the

drop acceleration is constant, it does not remain constant during the latter

portion of the breakup. Physically this indicates that approximately midway

through the breakup period the mass of a drop is decreasing at a rate faster

than the drag forces are diminishing and the net effect is an increase in the

drop acceleration.

The data also show that the distance moved by a drop in a given period of

time is considerably greater at the higher Mach numbers than at the lower ones.

= 3 5 whereas
For example, a 2700 # drop moves one inch in 150 #sec when M s .

at M = 1.5 it takes over 800 _sec to translate the same distance. Calculations
s

made from the displacement data for a 1090 # drop at M s = 3.3 give the velocity

at the instant of breakup as VD = . 9V and the acceleration as . 5 x 106 g's. The

above data are plotted in a non-dimensional form in Fig. 4. 9 where the present

tests are compared with those of Engle (17) and Nicholson (20). All of the dis-

placement curves contained in Fig. 4.8 reduce to a single parabola given by

X= .714T 2.

The effect of incident shock strength on the time required to break a drop

of a given diameter is shown by the information given in Fig. 4.10. For

example, less than 100 _sec is required to completely disintegrate a 900

drop at M s = 3.5 whereas 360 #sec is needed when Ms = 1.5. The apparent

discrepancy between Nicholson's (20) data and these results is explained by the

fact that Nicholson used various initial pressures, Pl < Patm' in the test

section for purposes of altitude simulation studies. Since a reduction in the

initial driver section pressure has the effect of producing a lower dynamic

pressure for a given shock Mach number, the breakup times he observed were

larger than those produced in either this or Engel's (17)" study.
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Nicholson correlated his measured breakup times of water drops with
-1/2

dynamic pressure and arrived at an empirical equation tb/D O = q , when

tb, D O and q are expressed in #sec, # and psi respectively. This equation is

shown as the solid line in Fig. 4. 11. Some of the data from the present tests

along with three points from Engel's study are also included. A curve described

-1/2
by tb/D O = 2.1 q2 fits the data of the present study fairly well at the high

values of dynamic pressure, but not at the lower values. The disparity between

our data and that of Nicholson's can partly be attributed to the difference in the

definition of breakup time. Furthermore, in our data, there seems to be a

systematic difference between the 900/_ and 2700/_ data which can mean a size

effect.

The data of Engel and of the present tests, contained in Fig. 4. 11, is re-

plotted in Fig. 4.12 to show the variation of the dimensionless breakup time,

T = tb V2/D ° with M 2, fl, We, and Reg. It is interesting to observe that the

dimensionless breakup time remains essentially constant and approximately

equal to 100 throughout the experimental range. Since it was impossible in the

experiments to vary only one dimensionless variable at a time, no definite con-

clusion can be drawn from such a plot. Modification of our shock tube is now

started so that a systematic change in the variables can be made.

Our breakup data can also be compared with breakup data of Morrell and

Povinelli (22) on water jets. These authors find that when We/R_'R-eg >_ 1, a

condition applying to most of the data in Fig. 4. 12, the nondimensional time can

be reduced to, in our notation,

1/3

_=.54fl2/3[/_2 _ Re 3/4
kP._] wel/2 (4.2)

If representative values within the range of conditions for our data are

substituted into this equation, one obtains a nearly constant T _- 60 as opposed

to 100 found above.

to be checked.

The difference could be due to geometry, but this will have
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Figure 4.11 Breakup Time Correlation with the Dynamic Pressure.
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V. SUMMARY OF RESULTS

The detonation velocity of 940 g spray varies from 5500 to 6950 ft/sec

as the equivalence ratio changes from . 18-. 96. The variation follows

the theoretical trend, but in general, the experimental velocities are

lower than the theoretical.

Detonation can easily be initiated in a single stream of 2600 # diameter

drops. For an equivalence ratio of 0.23 a propagation velocity of

3,700 - 4, 000 ft/sec is reached.

The reaction zone of the detonation of 2600 _ diameter drops appears

to be ~ 2 ft long. Secondary shocks produced by the burning drops

provide a powerful mechanism for driving the initial shock front.

"Retonation" has been induced within the reaction zone of two-phase

detonations by means of a "step" in the wall of the combustion tube.

A piezoelectric pressure transducer has been developed which minimizes

the "ringing" within the transducer and is capable of resolving pressure

fluctuations within the two-phase detonations.

Pressure measurements behind the shock front of the detonation show, at

times, an increase in pressure which can be attributed to the presence of

secondary shocks.

7. Heat transfer to the wall within the reaction zone is approximately

1000 Btu/ft2-sec for the 2600 _t diameter drops and could possibly be

as high as 10, 000 Btu/ft2-sec initially for the 940 p diameter drops.

8. Trajectories of the 2600p diameter drops within the detonation reaction

zone have been obtained with streak photographs. The breakup time of

a burning drop appears to be longer and the maximum displacement con-

siderably less than a non-burning drop in a shock tube.
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9. Difference equations for two-phase detonations of spray and liquid

films which include frictional effects and heat loss within the reaction

zone gives improved agreement with experiment when applied.

10. Detonation velocities in the 940 _ spray are closer to the theoretical

than those of the 2600 _ drop stream for the same mixture ratio.

11. The breakup of inert drops by shock waves is observed to occur mainly

as a result of the interaction between a drop and the convective flow field

established by the shock. The disintegration process is a continuous one

which begins almost instantaneously after interaction with an incident shock

wave. It is characterized by a transformation of a liquid drop into a

disperse micro-mist by the mechanism of shearing on the drop periphery.

12. The acceleration of the inert drops is approximately constant up to the end

of the breakup time.

13. The breakup time of inert drops is approximately proportional to the drop

diameter and the inverse of the convective velocity.
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APPENDIX

1. Pressure Measurement.

In order to better understand the reaction zone of heterogeneous detonations,

measurement of static sidewall pressures over a wide-band frequency range from

DC to above 1 MHz and for relatively long times was needed. In Refs. (1) and

(3) such pressure data was obtained with Kistler model 603 and 601A transducers.

These transducers consist of a thin metal diaphragm, a disk of metal for mass,

and quartz crystals which produce an electric charge when stressed in accordance

with the piezoelectric effect. A faithful reproduction of the pressure in the high

frequency range is difficult to achieve because of reflected elastic waves in the

sensing element. Filtering the output signal leaves much to be desired. The

new Kistler model 603A with "acceleration compensation", while better in this

regard, does not give satisfactory results for our work either.

Since pressure transducers which would satisfactorily meet our require-

ments were, to our knowledge, not available commercially, a design study based

primarily on the work of Zaitsev (23) and Soloukhin (24) was initiated. The main

objective was to eliminate the reflected elastic waves in the sensing element by

an appropriate design of the transducer. Further, many piezoelectric materials

are now available which have superior properties compared to those of quartz

and therefore can be used to advantage in the design of a pressure transducer.

Before the design of a new transducer is presented, the performance of several

Kistler transducers under various conditions of interest will be documented.

a. Response of Kistler Transducers.

The response of Kistler model 603, 601A and 603A pressure transducers

to a 1 atm stoichiometric hydrogen-oxygen gaseous detonation in a 1/2 x 3/8 in.

tube is shown in Fig. A. 1. (The use of gaseous detonation was found to be a

simple, repeatable method of producing conditions similar to those encountered

in heterogeneous detonations. ) All the Kistler transducers were attached to
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96 psi 

Fig.A. 1 Response of Kistler pressure transducers to a 1 atm 
stoic h io me t r ic hydrogen - oxygen ga s eou s detonation. 

(a) Model 603, no filter; charge amplifier at 1 mV/pCb 
Upper beam: 132 psi/div and 100 psec/div. Lower 
beam: 264 psi/div and 10 psec/div. 
Model 601A, no filter; charge amplifier at 1 mV/pCb 
Upper beam: 96 psi/div and 100 psec/div. Lower 
beam: 192 psi/div and 10 psec/div. 

(c) Model 603A, no filter; charge amplifier a t  10 mV/pCb 
57 psi/div and 100 psec/div. 

(b) 
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Fig. A. 1 
(d) Model 601A, no filter; charge amplifier at 10 mV/pCb 

192 psi/div and 10 psec/div. 
(e) same as (d) except with Kistler 544-A50 output filter. 
( f )  same as (d) except with 27,000 i-2 input filter. 
(g) same as (d) except with both input and output filters. 
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25 ft of low-noise Kistler cable, a Kistler charge amplifier model 566, and

a Tektronix oscilloscope model 555 with type M plug-in-units. The verticle

scale is determined from static calibrations. For models 603 and 601A the

unfiltered output has an initial overshoot of at least 100% and a natural

frequency of about 200 KHz. The second pressure rise is caused by the

return of the reflected shock from the end of the closed tube. The model 603A,

which recently became available and has "acceleration compensation," has

somewhat improved response as shown in Fig. A. l(c), but it is not considered

satisfactory to probe the reaction zone of a heterogeneous detonation. In all

cases it is difficult to assign a peak pressure to the detonation wave because

of the overshoot and the trailing rarefaction wave.

The effect of filtering the signal into or out of the charge amplifier is shown

in Fig. A. 1 (d-g). While the ringing is minimized, the rise time is increased

and the signal is attenuated as a function of frequency, and thus it is still diffi-

cult to interpret the pressure level and to separate the dynamic response of the

transducer from true fluctuations in the gas.

b. Pressure Transducer with Acoustic Absorbing Rod.

A diagram of the pressure transducer as built in this laboratory is shown

in Fig. A. 2. The pressure sensing element is made of lead metaniobate

(PbNb206). Tin was chosen as the material for the acoustic absorbing rod

because the acoustic impedance (pC = 1.99 x 106 gm/cm 2 sec) closely matches

the acoustic impedance of the lead metaniobate (pC = 1.92 x 106 gm/cm 2 sec).

The rod was made 6.5 in. long to give a theoretical "ring free" time of 120 _sec.

The rod was faced off on a lathe; no special lapping was done. Lead metaniobate

was commercially available in 1 in. diameter disks 0.050 in. thick, silvered on

both sides. These disks were cut to size with an ultrasonic drill using a 1 #

boron slurry, and with this technique a 1/8 in. diameter was the minimum

size that could be cut satisfactorily. Indium solder (IndaUoy No. 1, Indium

Corp. of America, Utica, N.Y. ) which is a 5{}% indium, 50% tin alloy was used
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Figure A. 2

(4) Brass

_0" *

." _.,:_

pressure Transducer with AcoustiC Absorbing Rod.
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to join the lead metaniobate disk to the tin rod. No flux was used_ however,

it was found that a slight amount of precipitated silver powder on the surface

of the disk greatly improved the solderability. The rod assembly was then

positioned in a brass housing and potted in silicone rubber (Silastic 521, Dow

Corning Corp., Midland, Mich. ) to provide electrical and mechanical isolation.

The clearance between the brass and the pressure sensing element was held to

0.015 in. to minimize longitudinal compression of the silicone rubber. One

electrical connection is made at the end of the tin to a BNC connector and the

other is made from the sensor to the case with silver doped epoxy and/or a

thin wire soldered across the silicone rubber gap.

The choice of lead metaniobate requires some discussion. Quartz has

been used extensively to date; however, it appears in general to have less de-

sirable properties as a pressure transducer material than several ceramic

piezoelectric materials such as lead titanate zirconate and lead metaniobate.

Some of the pertinent properties are listed in Table V as obtained from manu-

facturer's data and Jaffe (25). The charge generated by a single piezoelectric

element is equal to the piezoelectric constant times the frontal area of the element

times the pressure. The greater charge output of the ceramics is apparent, but

of particular interest is the low cross-axes sensitivity of the lead metaniobate

compared to the longitudinal mode. The voltage output is given by the charge

generated divided by the capacitance of the element, housing and cable. The

capacitance of the element equals the dielectric constant times the area divided

by the thickness of the element. Since the capacitance of the housing and cable

of this design is generally at least 100 pF, the relatively high dielectric constants of

the ceramics is not a disadvantage in terms of output voltage level. Lead

metaniobate is also of interest for pressure transducers because of its very

low mechanical Q--a parameter which indicates the internal damping of the

material. Quartz, on the other hand, has very little damping effect, and thus

reflected elastic waves in the crystal continue for relatively long periods of time.

The two ceramic materials have Curie temperatures comparable to quartz, and
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the piezoelectric and dielectric constants vary little with temperature changes

from 20°C to 200°C or more. Finally the velocity of a compressional wave,

density and acoustic impedance are given in Table VI. Copper is a good

acoustic match for PZT, while tin is an excellent match for lead metaniobate.

However, PZT-copper transducers assembled in the same manner gave inferior

results compared to the lead metaniobate-tin combination.

In recording a high frequency signal from the transducer, the output signal

was shunted by . 01 _F and connected directly to a Tektronix 555 oscilloscope,

which has an input impedance of 106 ohms. This procedure results in an RC

time constant of 10 msec and gives satisfactory results for sweep times less

than 1 msec provided that the pressure jumps of interest are several hundred

psi. In cases where the pressures are lower and/or the times of interest

longer it is desirable to increase the input impedance of the recorder. An

insulated gate field effect transistor in a common source configuration, as

shown in Fig. A. 3, was found to be a simple means of obtaining an input

impedance of the order of 1014 ohms. The circuit used has a gain of. 76 and

an input current of less than 0.5 nA with 4 V input. This circuit was used for

static calibration of the transducers; over the investigated range of 100 to 1000 psi

the output of the transducer was quite linear.

The response of the pressure transducer flush mounted in the side-wall

of a conventional 1.5 x 2.5 in. shock tube and in a 1/2 x 3/8 in. detonation

tube is shown in Fig. A. 4. In Fig. A. 4(a) the response to a Mach 3.2 shock

at a pressure level of 156 psig is presented. The rise time of the signal is

2.5 #sec which is associated primarily with the time for the shock to traverse

the face of the sensing element. The spurious signals are quite small. The

response to a 2 atm stoichiometric hydrogen-oxygen detonation at a peak

pressure level of 500 psi is given in Fig. A. 4(b). Here some precursor

transverse vibration is evident (no attempt to shock mount the transducer case

was made). Reflected shocks from a flanged joint and the end of the tube also
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Figure A. 3 High Impedance Circuit for the Pressure Transducer
Utilizing a Field Effect Transistor.
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Response of 1/8 in. diameter lead metaniobate-tin 
pressure transducer direct to oscilloscope with 
0. 01 y F  shunt: 

(a) Mach 3. 2 normal shock in 1 a tm air, . 02 v/div, 
50 psec/div (upper beam) and 5 ysec/div 
(lower beam) 

(b) Stoichiometric hydrogen-oxygen gaseous 
detonation initially a t  2 atin, 0. 05 v/div 
and 50 ysec/div. 
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are evident. In both cases it is rather remarkable that no significant signals

due to reflected waves from the end of the tin appear. About 110 _sec after

the initial shock a slight negative going pulse is apparent, which agrees with

the predicted arrival of the primary elastic wave from the rear of the tin.

Apparently the elastic waves in the tin are attenuated with the aid of the silicone

rubber, and thus no further design features are needed for long duration

operation.

2. Heat Transfer Measurement.

Thin film resistance gauges for determination of the local heat transfer

to the wall were used in the heterogeneous detonation studies. This type of

gauge is used widely in shock tubes, and the construction and theory are des-

cribed by Vidal (26) and Rabinowicz (27). The design of the gauge used in our

work is shown in Fig. A. 5. A strip of Hanovia liquid platinum (Hanovia No. 05,

Engelhard Industries, Inc. ) about 1 mm wide was painted on a fused quartz

(General Electric Type 101) disk 1/4 in. diam. by 1/16 in. thick. The disk

was then baked in an oven at 1225°F for 10 min. A second coat was applied

in the same manner. Next the disks were coated with fluorocarbon lacquer

(3M Co., No. FX-703) as a dielectric protection against ionized gases. Lead

wires were soldered to the platinum and the disk was potted in a brass housing

with silicone rubber. The resistance of the gauges varied from 16 to 19 ohms.

The gauge operates on the principle that a small temperature rise in the

thin metal film results in a linear change in the resistance of the film, which

appears as a voltage variation when used in conjunction with the circuit shown

in Fig. A. 6. The response time of this type of gauge is known to be less than

0.1 #sec. The heat transfer to the gauge is then obtained by assuming one-

dimensional unsteady heat conduction through an infinite slab. The solution

for the heat transfer to the wall is,
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Figure A. 5 Assembly Drawing of Heat Transfer Gauge.

98



+ O-----_

0-25 V
0-25 MA

O_ I000__X/X,
0

GAUG E----_[

7

O+

SCOPE

Figure A. 6 Operating Circuit for Heat Transfer Gauge.
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q(t) =

t

 °.oI <7r o
where R is the resistance of the gauge, I is the current through the gauge,

o

a is the coefficient of resistivity of the platinum, k, p, c are the conductivity

density and heat capacity respectively of the quartz, and E is the voltage rise

as measured on an oscilloscope.

The parameter kgk4_ was calculated from data supplied by the General

Electric Company for their fused quartz, and a value of . 0742 Btu per ft 2 OF sec

was used. The coefficient of resistivity was determined by calibrating the gauge

in a distilled water bath which was held at various temperatures and a value,

which varied somewhat for each gauge but averaged about 0.50 x 10 -3 per OF,

was obtained.

1/2

The reduction of the voltage output of the gauge as a function of time to

wall heat transfer is a lengthy numerical calculation and was accordingly done

on a digital computer. The Polaroid record of the oscilloscope trace was

enlarged to 8 x 10 in. and the voltage tabulated at approximately 50 time intervals.

Values of voltage between the tabulated points were obtained by interpolation

using a third order polynomial. By assuming a straight line approximation to

the curve over the small interval, the expression for heat transfer to the wall

can be put in the following form which was carried out on a digital computer:

where,

At

n

E'

+ E_l(_n-- v_-1)+E_2(V_- 1 - V_-2)+ ... +Ein-1)(nt

is the interval of time between voltage measurements

represents the nth time interval

is the derivative of voltage with respect to time in a given

interval
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A is the gauge constant which equals kv_

The heat transfer coefficient C H was also evaluated with the aid of the

computer where C H is defined according to Eq. (3. 28). The following expression

for C H was used and the integration was done using Simpson's rule:

where

nat

q dt

C H (nAt)= 0
t(B - CE)

3

B- 2

C

Pl

Us Cp 1 P(____ 1/
air o

The response of the heat transfer gauge to a fully developed, stoichiometric

hydrogen-oxygen gaseous detonation is shown in Fig. A. 7. Useful data could

not be taken over a longer time with the present setup due to the reflected shock

from the end of the tube. These measurements were made as a means of

checking the response of the gauge; however, they are of some interest by

themselves because this data has not been widely reported. The heat transfer

to the wall which was obtained from the traces is shown in Fig. A. 8. Also

shown is the data of Laderman, Hecht, and Oppenheim _28)"" which was obtained

with a ceramic backing material. In addition, these authors report that the

local heat transfer rates to the wall are nearly identical throughout the region of

transition to detonation. The theoretical predictions of Sichel and David (29)

are also indicated in the figures. These curves were developed by applying

Chapman-Jouguet conditions to turbulent, shock tube-type, boundary layer
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Figure A. 7 Response of heat transfer gauges to  a 1 atm 
stoichiometric hydrogen-oxygen gaseous detonation in the 
side-wall of 1/2 x 3/8 in. tube. 

(a) Gauge No. 3, 19 mA, 16 ohms, . 0 2  v/div and 
20 psec/div. 

(b) Gauge No. 10, 19 mA, 19 ohms, . 02 v/div and 
20 psec/div. 
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equations. The calculation was made for a frozen boundary layer with a non-

catalytic wall and for a boundary layer in chemical equilibrium. The rarefaction

wave behind the Chapman-Jouguet plane was not accounted for, however, and is

the probable reason why the experimental results show higher rates of decrease

than does the theory. The reported data here supercedes that reported earlier

in Ref. (3).

3. Velocity Measurement.

The measurement of detonation velocity was made by using pressure

switches located at several points along the tube. These switches, which are

part of a multiple RC circuit, produce a signal of 2-3 volts with about 5 _sec

decay when they are closed by the passage of the wave. The swtiches and the

RC circuit was described in Ref. (3). The signals are displayed on an

oscilloscope operated in a raster mode. The raster used before (3) had the

disadvantage that there was about 20% dead time between horizontal sweeps.

As a result any pressure switch signal during this dead-time was lost.

To avoid this dead time an external raster circuit shown in Fig. A. 9 in

conjunction with a function generator (Exact Electronics type 255) are used

with an oscilloscope (Tektronics model 555). The triangular wave signal

from the generator is fed into the external sweep of the scope. A trigger

signal from the generator at the beginning of each cycle allows the trace to

move vertically for a short period of time unless a 150 v. signal is applied from

a thyratron unit. When this signal is received the trace is moved vertically.

The signal from the pressure switch circuit is superimposed on the vertical

sweep signal by means of a type CA plug-in unit. Because the generator gives

one impulse at the beginning of the cycle, each horizontal trace is actually

a double trace due to beam travel over itself during one half of the cycle.

However, no cofusion is generated by this situation since the direction of the

decay of the pressure switch signal can be used to find out at what part of the
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cycle the pressure switch signal is started. Figure A. 10 shows a typical

raster record where signal decays to both left and right can be seen. Measure-

ment of time between two consecutive signals and knowledge of the distance

between pressure switches responsible for these signals are used to calculate

an average velocity for that distance.
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Figure A. 10 Typical raster recon  

Run no. 263, 10 psec/ cm, time advancing from top to  bottom 
(example: the time between the last 2 pressure 

switch signals = 160 p sec. ) 

- 
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